

 [image: _images/banner.png]

About ChatterBot

ChatterBot is a Python library that makes it easy to generate automated
responses to a user’s input. ChatterBot uses a selection of machine learning
algorithms to produce different types of responses. This makes it easy for
developers to create chat bots and automate conversations with users.
For more details about the ideas and concepts behind ChatterBot see the
process flow diagram.

An example of typical input would be something like this:

user: Good morning! How are you doing?
bot: I am doing very well, thank you for asking.
user: You're welcome.
bot: Do you like hats?

Language Independence

The language independent design of ChatterBot allows it to be trained to speak any language.
Additionally, the machine-learning nature of ChatterBot allows an agent instance to improve
it’s own knowledge of possible responses as it interacts with humans and other sources of informative data.

How ChatterBot Works

ChatterBot is a Python library designed to make it easy to create software that can engage in conversation.

An untrained instance of ChatterBot starts off with no knowledge of how to communicate.
Each time a user enters a statement, the library saves the text that they entered and the text
that the statement was in response to. As ChatterBot receives more input the number of responses
that it can reply and the accuracy of each response in relation to the input statement increase.

The program selects the closest matching response by searching for the closest matching known
statement that matches the input, it then chooses a response from the selection of known responses
to that statement.

Process flow diagram

[image: ChatterBot process flow diagram]

Contents:

	Installation
	Installing from PyPi

	Installing from GitHub

	Installing from source
	Checking the version of ChatterBot that you have installed

	Upgrading ChatterBot to the latest version
	Upgrading to Newer Releases

	Quick Start Guide
	Create a new chat bot

	Training your ChatBot

	Get a response

	ChatterBot Tutorial
	Getting help

	Installing ChatterBot

	Creating your first chat bot
	Setting the storage adapter

	Input and output adapters

	Specifying logic adapters

	Getting a response from your chat bot

	Training your chat bot

	Examples
	Simple Example

	Terminal Example

	Using MongoDB

	Time and Mathematics Example

	Gitter Example

	Using SQL Adapter

	Read only mode

	More Examples

	Training
	Setting the training class

	Training classes
	Training via list data

	Training with corpus data
	Specifying corpus scope

	Training with the Twitter API
	Twitter training example

	Training with the Ubuntu dialog corpus

	Creating a new training class

	Preprocessors
	Preprocessor functions

	Creating new preprocessors

	Logic Adapters
	The MultiLogicAdapter
	Selecting a response from multiple logic adapters
	Response selection

	Methods

	How logic adapters select a response
	Response selection methods
	Use your own response selection method

	Setting the response selection method

	Response selection in logic adapters

	Creating a new logic adapter
	Logic adapter methods

	Example logic adapter

	Directory structure

	Responding to specific input

	Interacting with services

	Providing extra arguments

	Best Match Adapter
	How it works

	Setting parameters

	Time Logic Adapter

	Mathematical Evaluation Adapter

	Low Confidence Response Adapter
	Low confidence response example

	Specific Response Adapter
	Specific response example

	Input Adapters
	Creating a new input adapter

	Variable input type adapter

	Terminal input adapter

	Gitter input adapter

	HipChat input adapter

	Mailgun input adapter

	Microsoft Bot Framework input adapter

	Output Adapters
	Creating a new output adapter

	Output format adapter

	Terminal output adapter

	Gitter output adapter

	HipChat output adapter

	Microsoft Bot Framework output adapter

	Mailgun output adapter

	Storage Adapters
	Creating a new storage adapter

	SQL Storage Adapter

	MongoDB Storage Adapter

	Filters
	How to create a new filter for ChatterBot
	Filter Queries
	statement_text_equals(statement_text)

	statement_text_not_in(statements)

	statement_response_list_contains(statement_text)

	statement_response_list_equals(response_list)

	Filter Support

	Setting filters

	Filter classes

	ChatterBot
	Example chat bot parameters

	Example expanded chat bot parameters

	Enable logging

	Using a custom logger

	Adapters
	Adapters types

	Accessing the chatbot instance

	Conversations
	Conversation scope

	Conversation example
	Statements

	Responses

	Statement-response relationship

	Comparisons
	Statement comparison
	Use your own comparison function
	Setting the comparison method

	Utility Methods
	Module imports

	Class initialization

	Terminal input

	Stopword removal

	ChatBot response time

	Parsing datetime information

	ChatterBot Corpus
	Corpus language availability

	Exporting your chat bot’s database as a training corpus

	Django Integration
	Chatterbot Django Settings
	Additional Django settings

	Django Training
	Management command

	Training settings

	ChatterBot Django Views
	API Views

	Webservices
	WSGI

	Hosting static files

	Install packages
	Installed Apps

	API view

	Migrations

	MongoDB and Django

	Frequently Asked Questions
	Python String Encoding
	Does ChatterBot handle non-ascii characters?

	How do I fix Python encoding errors?
	Unicode header

	Unicode escape characters

	Import unicode literals from future

	How do I deploy my chat bot to the web?

	What kinds of machine learning does ChatterBot use?
	1. Search algorithms

	2. Classification algorithms

	Command line tools
	Get the installed ChatterBot version

	Locate NLTK data

	Development
	Contributing to ChatterBot
	Setting Up a Development Environment

	Reporting a Bug

	Requesting New Features

	Contributing Documentation

	Contributing Code

	Releasing ChatterBot
	Versioning

	Release Process

	Release Notes [https://github.com/gunthercox/ChatterBot/releases]

	Unit Testing
	ChatterBot tests

	Django integration tests

	Django example app tests

	Benchmark tests

	Running all the tests
	Installing tox

	Using tox

	Packaging your code for ChatterBot
	Package directory structure
	Register on PyPI

	Generate packages

	Upload packages

	Install your package locally

	Using your package

	Testing your code

	Glossary

Report an Issue

Please direct all bug reports and feature requests to the project’s issue
tracker on GitHub [https://github.com/gunthercox/ChatterBot/issues/].

Indices and tables

	Index

	Module Index

	Search Page

Installation

The recommended method for installing ChatterBot is by using pip [https://pip.pypa.io/en/stable/installing/].

Installing from PyPi

If you are just getting started with ChatterBot, it is recommended that you
start by installing the latest version from the Python Package Index (PyPi [https://pypi.python.org/pypi]).
To install ChatterBot from PyPi using pip run the following command in your terminal.

pip install chatterbot

Installing from GitHub

You can install the latest development version of ChatterBot directly from GitHub using pip.

pip install git+git://github.com/gunthercox/ChatterBot.git@master

Installing from source

	Download a copy of the code from GitHub. You may need to install git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git].

git clone https://github.com/gunthercox/ChatterBot.git

	Install the code you have just downloaded using pip

pip install ./ChatterBot

Checking the version of ChatterBot that you have installed

If you already have ChatterBot installed and you want to check what version you
have installed you can run the following command.

python -m chatterbot --version

Upgrading ChatterBot to the latest version

	Upgrading to Newer Releases

Upgrading to Newer Releases

Like any software, changes will be made to ChatterBot over time.
Most of these changes are improvements. Frequently, you don’t have
to change anything in your code to benefit from a new release.

Occasionally there are changes that will require modifications in
your code or there will be changes that make it possible for you
to improve your code by taking advantage of new features.

To view a record of ChatterBot’s history of changes, visit the
releases tab on ChatterBot’s GitHub page.

	https://github.com/gunthercox/ChatterBot/releases

Use the pip command to upgrade your existing ChatterBot
installation by providing the –upgrade parameter:

pip install chatterbot --upgrade

Also see Versioning for information about ChatterBot’s versioning policy.

Quick Start Guide

The first thing you’ll need to do to get started is install ChatterBot.

pip install chatterbot

See Installation for options for alternative installation methods.

Create a new chat bot

Note

If you are using Python 2.7, be sure that the unicode header is the first line of
your Python file: # -*- coding: utf-8 -*-

from chatterbot import ChatBot
chatbot = ChatBot("Ron Obvious")

Note

The only required parameter for the ChatBot is a name.
This can be anything you want.

Training your ChatBot

After creating a new ChatterBot instance it is also possible to train the bot.
Training is a good way to ensure that the bot starts off with knowledge about
specific responses. The current training method takes a list of statements that
represent a conversation.
Additional notes on training can be found in the Training documentation.

Note

Training is not required but it is recommended.

from chatterbot.trainers import ListTrainer

conversation = [
 "Hello",
 "Hi there!",
 "How are you doing?",
 "I'm doing great.",
 "That is good to hear",
 "Thank you.",
 "You're welcome."
]

chatbot.set_trainer(ListTrainer)
chatbot.train(conversation)

Get a response

response = chatbot.get_response("Good morning!")
print(response)

ChatterBot Tutorial

This tutorial will guide you through the process of creating a simple command-line chat bot using ChatterBot.

Getting help

If you’re having trouble with this tutorial, you can post a message on Gitter [https://gitter.im/chatterbot/Lobby]
to chat with other ChatterBot users who might be able to help.

You can also ask questions [https://stackoverflow.com/questions/ask] on Stack Overflow [https://stackoverflow.com/questions/tagged/chatterbot] under the chatterbot tag.

If you believe that you have encountered an error in ChatterBot, please open a
ticket on GitHub: https://github.com/gunthercox/ChatterBot/issues/new

Installing ChatterBot

You can install ChatterBot on your system using Python’s pip command.

pip install chatterbot

See Installation for alternative installation options.

Creating your first chat bot

Create a new file named chatbot.py.
Then open chatbot.py in your editor of choice.

Before we do anything else, ChatterBot needs to be imported.
The import for ChatterBot should look like the following line.

from chatterbot import ChatBot

Create a new instance of the ChatBot class.

bot = ChatBot('Norman')

This line of code has created a new chat bot named Norman.
There is a few more parameters that we will want to specify
before we run our program for the first time.

Setting the storage adapter

ChatterBot comes with built in adapter classes that allow it to connect
to different types of databases. In this tutorial, we will be using the
SQLStorageAdapter which allows the chat bot to connect to SQL databases.
By default, this adapter will create a SQLite [https://www.sqlite.org/] database.

The database parameter is used to specify the path to the database
that the chat bot will use. For this example we will call the database
database.sqlite3. this file will be created automatically if it doesn’t
already exist.

bot = ChatBot(
 'Norman',
 storage_adapter='chatterbot.storage.SQLStorageAdapter',
 database='./database.sqlite3'
)

Note

The SQLStorageAdapter is ChatterBot’s default adapter.
If you do not specify an adapter in your constructor,
the SQLStorageAdapter adapter will be used automatically.

Input and output adapters

Next, we will add in parameters to specify the input and output terminal
adapter. The input terminal adapter simply reads the user’s input from
the terminal. The output terminal adapter prints the chat bot’s response.

bot = ChatBot(
 'Norman',
 storage_adapter='chatterbot.storage.SQLStorageAdapter',
 input_adapter='chatterbot.input.TerminalAdapter',
 output_adapter='chatterbot.output.TerminalAdapter',
 database='./database.sqlite3'
)

Specifying logic adapters

The logic_adapters parameter is a list of logic adapters.
In ChatterBot, a logic adapter is a class that takes an input statement
and returns a response to that statement.

You can choose to use as many logic adapters as you would like.
In this example we will use two logic adapters. The TimeLogicAdapter returns
the current time when the input statement asks for it.
The MathematicalEvaluation adapter solves math problems that use basic
operations.

bot = ChatBot(
 'Norman',
 storage_adapter='chatterbot.storage.SQLStorageAdapter',
 input_adapter='chatterbot.input.TerminalAdapter',
 output_adapter='chatterbot.output.TerminalAdapter',
 logic_adapters=[
 'chatterbot.logic.MathematicalEvaluation',
 'chatterbot.logic.TimeLogicAdapter'
],
 database='./database.sqlite3'
)

Getting a response from your chat bot

Next, you will want to create a while loop for your chat bot to run in.
By breaking out of the loop when specific exceptions are triggered,
we can exit the loop and stop the program when a user enters ctrl+c.

while True:
 try:
 bot_input = bot.get_response(None)

 except(KeyboardInterrupt, EOFError, SystemExit):
 break

Training your chat bot

At this point your chat bot, Norman will learn to communicate as you talk to him.
You can speed up this process by training him with examples of existing conversations.

bot.train([
 'How are you?',
 'I am good.',
 'That is good to hear.',
 'Thank you',
 'You are welcome.',
])

You can run the training process multiple times to reinforce preferred responses
to particular input statements. You can also run the train command on a number
of different example dialogs to increase the breadth of inputs that your chat
bot can respond to.

This concludes this ChatterBot tutorial. Please see other sections of the
documentation for more details and examples.

Up next: Examples

Examples

The following examples are available to help you get started with ChatterBot.

Simple Example

-*- coding: utf-8 -*-
from chatterbot import ChatBot

Create a new chat bot named Charlie
chatbot = ChatBot(
 'Charlie',
 trainer='chatterbot.trainers.ListTrainer'
)

chatbot.train([
 "Hi, can I help you?",
 "Sure, I'd like to book a flight to Iceland.",
 "Your flight has been booked."
])

Get a response to the input text 'How are you?'
response = chatbot.get_response('I would like to book a flight.')

print(response)

Terminal Example

This example program shows how to create a simple terminal client
that allows you to communicate with your chat bot by typing into
your terminal.

-*- coding: utf-8 -*-
from chatterbot import ChatBot

Uncomment the following lines to enable verbose logging
import logging
logging.basicConfig(level=logging.INFO)

Create a new instance of a ChatBot
bot = ChatBot(
 "Terminal",
 storage_adapter="chatterbot.storage.SQLStorageAdapter",
 logic_adapters=[
 "chatterbot.logic.MathematicalEvaluation",
 "chatterbot.logic.TimeLogicAdapter",
 "chatterbot.logic.BestMatch"
],
 input_adapter="chatterbot.input.TerminalAdapter",
 output_adapter="chatterbot.output.TerminalAdapter",
 database="../database.db"
)

print("Type something to begin...")

The following loop will execute each time the user enters input
while True:
 try:
 # We pass None to this method because the parameter
 # is not used by the TerminalAdapter
 bot_input = bot.get_response(None)

 # Press ctrl-c or ctrl-d on the keyboard to exit
 except (KeyboardInterrupt, EOFError, SystemExit):
 break

Using MongoDB

Before you can use ChatterBot’s built in adapter for MongoDB,
you will need to install MongoDB [https://docs.mongodb.com/manual/installation/]. Make sure MongoDB is
running in your environment before you execute your program.
To tell ChatterBot to use this adapter, you will need to set
the storage_adapter parameter.

storage_adapter="chatterbot.storage.MongoDatabaseAdapter"

-*- coding: utf-8 -*-
from chatterbot import ChatBot

Uncomment the following lines to enable verbose logging
import logging
logging.basicConfig(level=logging.INFO)

Create a new ChatBot instance
bot = ChatBot(
 'Terminal',
 storage_adapter='chatterbot.storage.MongoDatabaseAdapter',
 logic_adapters=[
 'chatterbot.logic.BestMatch'
],
 filters=[
 'chatterbot.filters.RepetitiveResponseFilter'
],
 input_adapter='chatterbot.input.TerminalAdapter',
 output_adapter='chatterbot.output.TerminalAdapter',
 database='chatterbot-database'
)

print('Type something to begin...')

while True:
 try:
 bot_input = bot.get_response(None)

 # Press ctrl-c or ctrl-d on the keyboard to exit
 except (KeyboardInterrupt, EOFError, SystemExit):
 break

Time and Mathematics Example

ChatterBot has natural language evaluation capabilities that
allow it to process and evaluate mathematical and time-based
inputs.

-*- coding: utf-8 -*-
from chatterbot import ChatBot

bot = ChatBot(
 "Math & Time Bot",
 logic_adapters=[
 "chatterbot.logic.MathematicalEvaluation",
 "chatterbot.logic.TimeLogicAdapter"
],
 input_adapter="chatterbot.input.VariableInputTypeAdapter",
 output_adapter="chatterbot.output.OutputAdapter"
)

Print an example of getting one math based response
response = bot.get_response("What is 4 + 9?")
print(response)

Print an example of getting one time based response
response = bot.get_response("What time is it?")
print(response)

Gitter Example

ChatterBot works great with chat rooms. An example for the
popular service Gitter demonstrates this.

-*- coding: utf-8 -*-
from chatterbot import ChatBot
from settings import GITTER

Uncomment the following lines to enable verbose logging
import logging
logging.basicConfig(level=logging.INFO)

chatbot = ChatBot(
 'GitterBot',
 gitter_room=GITTER['ROOM'],
 gitter_api_token=GITTER['API_TOKEN'],
 gitter_only_respond_to_mentions=False,
 input_adapter='chatterbot.input.Gitter',
 output_adapter='chatterbot.output.Gitter',
 trainer='chatterbot.trainers.ChatterBotCorpusTrainer'
)

chatbot.train('chatterbot.corpus.english')

The following loop will execute each time the user enters input
while True:
 try:
 response = chatbot.get_response(None)

 # Press ctrl-c or ctrl-d on the keyboard to exit
 except (KeyboardInterrupt, EOFError, SystemExit):
 break

Using SQL Adapter

ChatterBot data can be saved and retrieved from SQL databases.

-*- coding: utf-8 -*-
from chatterbot import ChatBot

Uncomment the following lines to enable verbose logging
import logging
logging.basicConfig(level=logging.INFO)

Create a new instance of a ChatBot
bot = ChatBot(
 "SQLMemoryTerminal",
 storage_adapter='chatterbot.storage.SQLStorageAdapter',
 logic_adapters=[
 "chatterbot.logic.MathematicalEvaluation",
 "chatterbot.logic.TimeLogicAdapter",
 "chatterbot.logic.BestMatch"
],
 input_adapter="chatterbot.input.TerminalAdapter",
 output_adapter="chatterbot.output.TerminalAdapter",
)

print("Type something to begin...")

The following loop will execute each time the user enters input
while True:
 try:
 # We pass None to this method because the parameter
 # is not used by the TerminalAdapter
 bot_input = bot.get_response(None)

 # Press ctrl-c or ctrl-d on the keyboard to exit
 except (KeyboardInterrupt, EOFError, SystemExit):
 break

Read only mode

Your chat bot will learn based on each new input statement it receives.
If you want to disable this learning feature after your bot has been trained,
you can set read_only=True as a parameter when initializing the bot.

chatbot = ChatBot("Johnny Five", read_only=True)

More Examples

Even more examples can be found in the examples directory in on GitHub:
https://github.com/gunthercox/ChatterBot/tree/master/examples

Training

ChatterBot includes tools that help simplify the process of training a chat bot instance.
ChatterBot’s training process involves loading example dialog into the chat bot’s database.
This either creates or builds upon the graph data structure that represents the sets of
known statements and responses. When a chat bot trainer is provided with a data set,
it creates the necessary entries in the chat bot’s knowledge graph so that the statement
inputs and responses are correctly represented.

[image: ChatterBot training statement graph]Several training classes come built-in with ChatterBot. These utilities range from allowing
you to update the chat bot’s database knowledge graph based on a list of statements
representing a conversation, to tools that allow you to train your bot based on a corpus of
pre-loaded training data.

You can also create your own training class. This is recommended if you wish to train your bot
with data you have stored in a format that is not already supported by one of the pre-built
classes listed below.

Setting the training class

ChatterBot comes with training classes built in, or you can create your own
if needed. To use a training class you must import it and pass it to
the set_trainer() method before calling train().

Training classes

Training via list data

	
chatterbot.trainers.ListTrainer(storage, **kwargs)

	Allows a chat bot to be trained using a list of strings
where the list represents a conversation.

For the training process, you will need to pass in a list of statements where the order of each statement is based
on its placement in a given conversation.

For example, if you were to run bot of the following training calls, then the resulting chatterbot would respond to
both statements of “Hi there!” and “Greetings!” by saying “Hello”.

from chatterbot.trainers import ListTrainer

chatterbot = ChatBot("Training Example")
chatterbot.set_trainer(ListTrainer)

chatterbot.train([
 "Hi there!",
 "Hello",
])

chatterbot.train([
 "Greetings!",
 "Hello",
])

You can also provide longer lists of training conversations.
This will establish each item in the list as a possible response to it’s predecessor in the list.

chatterbot.train([
 "How are you?",
 "I am good.",
 "That is good to hear.",
 "Thank you",
 "You are welcome.",
])

Training with corpus data

	
chatterbot.trainers.ChatterBotCorpusTrainer(storage, **kwargs)

	Allows the chat bot to be trained using data from the
ChatterBot dialog corpus.

ChatterBot comes with a corpus data and utility module that makes it easy to
quickly train your bot to communicate. To do so, simply specify the corpus
data modules you want to use.

from chatterbot.trainers import ChatterBotCorpusTrainer

chatterbot = ChatBot("Training Example")
chatterbot.set_trainer(ChatterBotCorpusTrainer)

chatterbot.train(
 "chatterbot.corpus.english"
)

Specifying corpus scope

It is also possible to import individual subsets of ChatterBot’s corpus at once.
For example, if you only wish to train based on the english greetings and
conversations corpora then you would simply specify them.

chatterbot.train(
 "chatterbot.corpus.english.greetings",
 "chatterbot.corpus.english.conversations"
)

You can also specify file paths to corpus files or directories of corpus files when calling the train method.

chatterbot.train(
 "./data/greetings_corpus/custom.corpus.json",
 "./data/my_corpus/"
)

Training with the Twitter API

	
chatterbot.trainers.TwitterTrainer(storage, **kwargs)

	Allows the chat bot to be trained using data
gathered from Twitter.

	Parameters

	
	random_seed_word – The seed word to be used to get random tweets from the Twitter API.
This parameter is optional. By default it is the word ‘random’.

	twitter_lang – Language for results as ISO 639-1 code.
This parameter is optional. Default is None (all languages).

Create an new app using your twitter account. Once created,
it will provide you with the following credentials that are
required to work with the Twitter API.

	Parameter

	Description

	twitter_consumer_key

	Consumer key of twitter app.

	twitter_consumer_secret

	Consumer secret of twitter app.

	twitter_access_token_key

	Access token key of twitter app.

	twitter_access_token_secret

	Access token secret of twitter app.

Twitter training example

-*- coding: utf-8 -*-
from chatterbot import ChatBot
from settings import TWITTER
import logging

'''
This example demonstrates how you can train your chat bot
using data from Twitter.

To use this example, create a new file called settings.py.
In settings.py define the following:

TWITTER = {
 "CONSUMER_KEY": "my-twitter-consumer-key",
 "CONSUMER_SECRET": "my-twitter-consumer-secret",
 "ACCESS_TOKEN": "my-access-token",
 "ACCESS_TOKEN_SECRET": "my-access-token-secret"
}
'''

Comment out the following line to disable verbose logging
logging.basicConfig(level=logging.INFO)

chatbot = ChatBot(
 "TwitterBot",
 logic_adapters=[
 "chatterbot.logic.BestMatch"
],
 input_adapter="chatterbot.input.TerminalAdapter",
 output_adapter="chatterbot.output.TerminalAdapter",
 database="./twitter-database.db",
 twitter_consumer_key=TWITTER["CONSUMER_KEY"],
 twitter_consumer_secret=TWITTER["CONSUMER_SECRET"],
 twitter_access_token_key=TWITTER["ACCESS_TOKEN"],
 twitter_access_token_secret=TWITTER["ACCESS_TOKEN_SECRET"],
 trainer="chatterbot.trainers.TwitterTrainer"
)

chatbot.train()

chatbot.logger.info('Trained database generated successfully!')

Training with the Ubuntu dialog corpus

Warning

The Ubuntu dialog corpus is a massive data set. Developers will currently
experience significantly decreased performance in the form of delayed
training and response times from the chat bot when using this corpus.

	
chatterbot.trainers.UbuntuCorpusTrainer(storage, **kwargs)

	Allow chatbots to be trained with the data from
the Ubuntu Dialog Corpus.

This training class makes it possible to train your chat bot using the Ubuntu
dialog corpus. Because of the file size of the Ubuntu dialog corpus, the download
and training process may take a considerable amount of time.

This training class will handle the process of downloading the compressed corpus
file and extracting it. If the file has already been downloaded, it will not be
downloaded again. If the file is already extracted, it will not be extracted again.

Creating a new training class

You can create a new trainer to train your chat bot from your own
data files. You may choose to do this if you want to train your
chat bot from a data source in a format that is not directly supported
by ChatterBot.

Your custom trainer should inherit chatterbot.trainers.Trainer class.
Your trainer will need to have a method named train, that can take any
parameters you choose.

Take a look at the existing trainer classes on GitHub [https://github.com/gunthercox/ChatterBot/blob/master/chatterbot/trainers.py] for examples.

Preprocessors

ChatterBot’s preprocessors are simple functions that modify the input statement
that a chat bot receives before the statement gets processed by the logic adaper.

Here is an example of how to set preprocessors. The preprocessors
parameter should be a list of strings of the import paths to your preprocessors.

chatbot = ChatBot(
 'Bob the Bot',
 preprocessors=[
 'chatterbot.preprocessors.clean_whitespace'
]
)

Preprocessor functions

ChatterBot comes with several built-in preprocessors.

	
chatterbot.preprocessors.clean_whitespace(chatbot, statement)

	Remove any consecutive whitespace characters from the statement text.

	
chatterbot.preprocessors.unescape_html(chatbot, statement)

	Convert escaped html characters into unescaped html characters.
For example: “” becomes “”.

	
chatterbot.preprocessors.convert_to_ascii(chatbot, statement)

	Converts unicode characters to ASCII character equivalents.
For example: “på fédéral” becomes “pa federal”.

Creating new preprocessors

It is simple to create your own preprocessors. A preprocessor is just a function
with a few requirements.

	It must take two parameters, the first is a ChatBot instance, the second is a Statement instance.

	It must return a statement instance.

Logic Adapters

Logic adapters determine the logic for how ChatterBot selects a response to a given input statement.

	The MultiLogicAdapter

	How logic adapters select a response

	Creating a new logic adapter

The logic adapter that your bot uses can be specified by setting the logic_adapters parameter
to the import path of the logic adapter you want to use.

It is possible to enter any number of logic adapters for your bot to use.
If multiple adapters are used, then the bot will return the response with
the highest calculated confidence value. If multiple adapters return the
same confidence, then the adapter that is entered into the list first will
take priority.

chatbot = ChatBot(
 "My ChatterBot",
 logic_adapters=[
 "chatterbot.logic.BestMatch"
]
)

Best Match Adapter

	
chatterbot.logic.BestMatch(**kwargs)

	A logic adapter that returns a response based on known responses to
the closest matches to the input statement.

The BestMatch logic adapter selects a response based on the best known match to a given statement.

How it works

The best match adapter uses a function to compare the input statement to known statements.
Once it finds the closest match to the input statement, it uses another function to select one of the
known responses to that statement.

Setting parameters

chatbot = ChatBot(
 "My ChatterBot",
 logic_adapters=[
 {
 "import_path": "chatterbot.logic.BestMatch",
 "statement_comparison_function": "chatterbot.comparisons.levenshtein_distance",
 "response_selection_method": "chatterbot.response_selection.get_first_response"
 }
]
)

Note

The values for response_selection_method and statement_comparison_function can be a string
of the path to the function, or a callable.

See the Statement comparison documentation for the list of functions included with ChatterBot.

See the Response selection methods documentation for the list of response selection methods included with ChatterBot.

Time Logic Adapter

	
chatterbot.logic.TimeLogicAdapter(**kwargs)

	The TimeLogicAdapter returns the current time.

	Kwargs

	
	positive (list) –
The time-related questions used to identify time questions.
Defaults to a list of English sentences.

	negative (list) –
The non-time-related questions used to identify time questions.
Defaults to a list of English sentences.

The TimeLogicAdapter identifies statements in which a question about the current time is asked.
If a matching question is detected, then a response containing the current time is returned.

User: What time is it?
Bot: The current time is 4:45PM.

Mathematical Evaluation Adapter

	
chatterbot.logic.MathematicalEvaluation(**kwargs)

	The MathematicalEvaluation logic adapter parses input to determine
whether the user is asking a question that requires math to be done.
If so, the equation is extracted from the input and returned with
the evaluated result.

	For example:

	User: ‘What is three plus five?’
Bot: ‘Three plus five equals eight’

	Kwargs

	
	language (str) –
The language is set to ‘ENG’ for English by default.

The MathematicalEvaluation logic adapter checks a given statement to see if
it contains a mathematical expression that can be evaluated.
If one exists, then it returns a response containing the result.
This adapter is able to handle any combination of word and numeric operators.

User: What is four plus four?
Bot: (4 + 4) = 8

Low Confidence Response Adapter

This adapter returns a specified default response if a response can not be
determined with a high amount of confidence.

	
chatterbot.logic.LowConfidenceAdapter(**kwargs)

	Returns a default response with a high confidence
when a high confidence response is not known.

	Kwargs

	
	threshold (float) –
The low confidence value that triggers this adapter.
Defaults to 0.65.

	default_response (str) or (iterable)–
The response returned by this logic adaper.

	response_selection_method (str) or (callable)
The a response selection method.
Defaults to get_first_response.

Low confidence response example

-*- coding: utf-8 -*-
from chatterbot import ChatBot

Create a new instance of a ChatBot
bot = ChatBot(
 'Default Response Example Bot',
 storage_adapter='chatterbot.storage.SQLStorageAdapter',
 logic_adapters=[
 {
 'import_path': 'chatterbot.logic.BestMatch'
 },
 {
 'import_path': 'chatterbot.logic.LowConfidenceAdapter',
 'threshold': 0.65,
 'default_response': 'I am sorry, but I do not understand.'
 }
],
 trainer='chatterbot.trainers.ListTrainer'
)

Train the chat bot with a few responses
bot.train([
 'How can I help you?',
 'I want to create a chat bot',
 'Have you read the documentation?',
 'No, I have not',
 'This should help get you started: http://chatterbot.rtfd.org/en/latest/quickstart.html'
])

Get a response for some unexpected input
response = bot.get_response('How do I make an omelette?')
print(response)

Specific Response Adapter

If the input that the chat bot receives, matches the input text specified
for this adapter, the specified response will be returned.

	
chatterbot.logic.SpecificResponseAdapter(**kwargs)

	Return a specific response to a specific input.

	Kwargs

	
	input_text (str) –
The input text that triggers this logic adapter.

	output_text (str) –
The output text returned by this logic adapter.

Specific response example

-*- coding: utf-8 -*-
from chatterbot import ChatBot

Create a new instance of a ChatBot
bot = ChatBot(
 'Exact Response Example Bot',
 storage_adapter='chatterbot.storage.SQLStorageAdapter',
 logic_adapters=[
 {
 'import_path': 'chatterbot.logic.BestMatch'
 },
 {
 'import_path': 'chatterbot.logic.SpecificResponseAdapter',
 'input_text': 'Help me!',
 'output_text': 'Ok, here is a link: http://chatterbot.rtfd.org'
 }
],
 trainer='chatterbot.trainers.ListTrainer'
)

Get a response given the specific input
response = bot.get_response('Help me!')
print(response)

The MultiLogicAdapter

ChatterBot internally uses a special logic adapter that allows it to choose the
best response generated by any number of other logic adapters.

Selecting a response from multiple logic adapters

The MultiLogicAdapter is used to select a single response from the responses
returned by all of the logic adapters that the chat bot has been configured to use.
Each response returned by the logic adapters includes a confidence score that indicates
the likeliness that the returned statement is a valid response to the input.

Response selection

The MultiLogicAdapter will return the response statement that has the greatest
confidence score. The only exception to this is a case where multiple logic adapters
return the same statement and therefore agree on that response.

For this example, consider a scenario where multiple logic adapters are being used.
Assume the following results were returned by a chat bot’s logic adapters.

	Confidence

	Statement

	0.2

	Good morning

	0.5

	Good morning

	0.7

	Good night

In this case, two of the logic adapters have generated the same result.
When multiple logic adapters come to the same conclusion, that statement
is given priority over another response with a possibly higher confidence score.
The fact that the multiple adapters agreed on a response is a significant
indicator that a particular statement has a greater probability of being
a more accurate response to the input.

When multiple adapters agree on a response, the greatest confidence score that
was generated for that response will be returned with it.

Methods

	
class chatterbot.logic.multi_adapter.MultiLogicAdapter(**kwargs)

	MultiLogicAdapter allows ChatterBot to use multiple logic
adapters. It has methods that allow ChatterBot to add an
adapter, set the chat bot, and process an input statement
to get a response.

	
add_adapter(adapter, **kwargs)

	Appends a logic adapter to the list of logic adapters being used.

	Parameters

	adapter (LogicAdapter) – The logic adapter to be added.

	
get_adapters()

	Return a list of all logic adapters being used, including system logic adapters.

	
get_greatest_confidence(statement, options)

	Returns the greatest confidence value for a statement that occurs
multiple times in the set of options.

	Parameters

	
	statement – A statement object.

	options – A tuple in the format of (confidence, statement).

	
get_initialization_functions()

	Get the initialization functions for each logic adapter.

	
insert_logic_adapter(logic_adapter, insert_index, **kwargs)

	Adds a logic adapter at a specified index.

	Parameters

	
	logic_adapter (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The string path to the logic adapter to add.

	insert_index (int [https://docs.python.org/3.4/library/functions.html#int]) – The index to insert the logic adapter into the list at.

	
process(statement)

	Returns the output of a selection of logic adapters
for a given input statement.

	Parameters

	statement – The input statement to be processed.

	
remove_logic_adapter(adapter_name)

	Removes a logic adapter from the chat bot.

	Parameters

	adapter_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The class name of the adapter to remove.

	
set_chatbot(chatbot)

	Set the chatbot for each of the contained logic adapters.

How logic adapters select a response

A typical logic adapter designed to return a response to
an input statement will use two main steps to do this.
The first step involves searching the database for a known
statement that matches or closely matches the input statement.
Once a match is selected, the second step involves selecting a
known response to the selected match. Frequently, there will
be a number of existing statements that are responses to the
known match.

To help with the selection of the response, several methods
are built into ChatterBot for selecting a response from the
available options.

Response selection methods

Response selection methods determines which response should be used in
the event that multiple responses are generated within a logic adapter.

	
chatterbot.response_selection.get_first_response(input_statement, response_list)

	
	Parameters

	
	input_statement (Statement) – A statement, that closely matches an input to the chat bot.

	response_list (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of statement options to choose a response from.

	Returns

	Return the first statement in the response list.

	Return type

	Statement

	
chatterbot.response_selection.get_most_frequent_response(input_statement, response_list)

	
	Parameters

	
	input_statement (Statement) – A statement, that closely matches an input to the chat bot.

	response_list (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of statement options to choose a response from.

	Returns

	The response statement with the greatest number of occurrences.

	Return type

	Statement

	
chatterbot.response_selection.get_random_response(input_statement, response_list)

	
	Parameters

	
	input_statement (Statement) – A statement, that closely matches an input to the chat bot.

	response_list (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of statement options to choose a response from.

	Returns

	Choose a random response from the selection.

	Return type

	Statement

Use your own response selection method

You can create your own response selection method and use it as long as the function takes
two parameters (a statements and a list of statements). The method must return a statement.

def select_response(statement, statement_list):

 # Your selection logic

 return selected_statement

Setting the response selection method

To set the response selection method for your chat bot, you
will need to pass the response_selection_method parameter
to your chat bot when you initialize it. An example of this
is shown below.

from chatterbot import ChatBot
from chatterbot.response_selection import get_most_frequent_response

chatbot = ChatBot(
 # ...
 response_selection_method=get_most_frequent_response
)

Response selection in logic adapters

When a logic adapter is initialized, the response selection method
parameter that was passed to it can be called using self.select_response
as shown below.

response = self.select_response(
 input_statement, list_of_response_options
)

Creating a new logic adapter

You can write your own logic adapters by creating a new class that
inherits from LogicAdapter and overrides the necessary
methods established in the LogicAdapter base class.

Logic adapter methods

	
class chatterbot.logic.LogicAdapter(**kwargs)

	This is an abstract class that represents the interface
that all logic adapters should implement.

	Parameters

	
	statement_comparison_function – The dot-notated import path to a statement comparison function.
Defaults to levenshtein_distance.

	response_selection_method – The a response selection method.
Defaults to get_first_response.

	
exception EmptyDatasetException(value='An empty set was received when at least one statement was expected.')

	

	
can_process(statement)

	A preliminary check that is called to determine if a
logic adapter can process a given statement. By default,
this method returns true but it can be overridden in
child classes as needed.

	Return type

	bool [https://docs.python.org/3.4/library/functions.html#bool]

	
class_name

	Return the name of the current logic adapter class.
This is typically used for logging and debugging.

	
get_initialization_functions()

	Return a dictionary of functions to be run once when the chat bot is instantiated.

	
process(statement)

	Override this method and implement your logic for selecting a response to an input statement.

A confidence value and the selected response statement should be returned.
The confidence value represents a rating of how accurate the logic adapter
expects the selected response to be. Confidence scores are used to select
the best response from multiple logic adapters.

The confidence value should be a number between 0 and 1 where 0 is the
lowest confidence level and 1 is the highest.

	Parameters

	statement (Statement) – An input statement to be processed by the logic adapter.

	Return type

	Statement

Example logic adapter

from chatterbot.logic import LogicAdapter

class MyLogicAdapter(LogicAdapter):
 def __init__(self, **kwargs):
 super(MyLogicAdapter, self).__init__(**kwargs)

 def can_process(self, statement):
 return True

 def process(self, statement):
 import random

 # Randomly select a confidence between 0 and 1
 confidence = random.uniform(0, 1)

 # For this example, we will just return the input as output
 selected_statement = statement
 selected_statement.confidence = confidence

 return selected_statement

Directory structure

If you create your own logic adapter you will need to have it in a separate file from your chat bot.
Your directory setup should look something like the following:

project_directory
├── cool_chatbot.py
└── cool_adapter.py

Then assuming that you have a class named MyLogicAdapter in your cool_adapter.py file,
you should be able to specify the following when you initialize your chat bot.

ChatBot(
 # ...
 logic_adapters=[
 {
 'import_path': 'cool_adapter.MyLogicAdapter'
 }
]
)

Responding to specific input

If you want a particular logic adapter to only respond to a unique type of
input, the best way to do this is by overriding the can_process
method on your own logic adapter.

Here is a simple example. Let’s say that we only want this logic adapter to
generate a response when the input statement starts with “Hey Mike”. This
way, statements such as “Hey Mike, what time is it?” will be processed,
but statements such as “Do you know what time it is?” will not be processed.

def can_process(self, statement):
 if statement.text.startswith('Hey Mike')
 return True
 else:
 return False

Interacting with services

In some cases, it is useful to have a logic adapter that can interact with an external service or
api in order to complete its task. Here is an example that demonstrates how this could be done.
For this example we will use a fictitious API endpoint that returns the current temperature.

def can_process(self, statement):
 """
 Return true if the input statement contains
 'what' and 'is' and 'temperature'.
 """
 words = ['what', 'is', 'temperature']
 if all(x in statement.text.split() for x in words)
 return True
 else:
 return False

def process(self, statement):
 from chatterbot.conversation import Statement
 import requests

 # Make a request to the temperature API
 response = requests.get('https://api.temperature.com/current?units=celsius')
 data = response.json()

 # Let's base the confidence value on if the request was successful
 if response.status_code == 200:
 confidence = 1
 else:
 confidence = 0

 temperature = data.get('temperature', 'unavailable')

 response_statement = Statement('The current temperature is {}'.format(temperature))

 return confidence, response_statement

Providing extra arguments

All key word arguments that have been set in your ChatBot class’s constructor
will also be passed to the __init__ method of each logic adapter.
This allows you to access these variables if you need to use them in your logic adapter.
(An API key might be an example of a parameter you would want to access here.)

You can override the __init__ method on your logic adapter to store additional
information passed to it by the ChatBot class.

class MyLogicAdapter(LogicAdapter):
 def __init__(self, **kwargs):
 super(MyLogicAdapter, self).__init__(**kwargs)

 self.api_key = kwargs.get('secret_key')

The secret_key variable would then be passed to the ChatBot class as shown below.

chatbot = ChatBot(
 # ...
 secret_key='************************'
)

Input Adapters

ChatterBot’s input adapters are designed to allow a chat bot to have a
versatile method of receiving or retrieving input from a given source.

	Creating a new input adapter

The goal of an input adapter is to get input from some source, and then
to convert it into a format that ChatterBot can understand. This format
is the Statement object found in ChatterBot’s
conversation module.

Variable input type adapter

	
chatterbot.input.VariableInputTypeAdapter(**kwargs)

	This is an abstract class that represents the
interface that all input adapters should implement.

The variable input type adapter allows the chat bot to accept a number
of different input types using the same adapter. This adapter accepts
strings [https://docs.python.org/2/library/string.html], dictionaries [https://docs.python.org/2/tutorial/datastructures.html#dictionaries] and Statements.

chatbot = ChatBot(
 "My ChatterBot",
 input_adapter="chatterbot.input.VariableInputTypeAdapter"
)

Terminal input adapter

	
chatterbot.input.TerminalAdapter(**kwargs)

	A simple adapter that allows ChatterBot to
communicate through the terminal.

The input terminal adapter allows a user to type into their terminal to
communicate with the chat bot.

chatbot = ChatBot(
 "My ChatterBot",
 input_adapter="chatterbot.input.TerminalAdapter"
)

Gitter input adapter

	
chatterbot.input.Gitter(**kwargs)

	An input adapter that allows a ChatterBot instance to get
input statements from a Gitter room.

chatbot = ChatBot(
 "My ChatterBot",
 input_adapter="chatterbot.input.Gitter",
 gitter_api_token="my-gitter-api-token",
 gitter_room="my-room-name",
 gitter_only_respond_to_mentions=True,
)

HipChat input adapter

	
chatterbot.input.HipChat(**kwargs)

	An input adapter that allows a ChatterBot instance to get
input statements from a HipChat room.

This is an input adapter that allows a ChatterBot instance to communicate
through HipChat [https://www.hipchat.com/].

Be sure to also see the documentation for the HipChat output adapter.

chatbot = ChatBot(
 "My ChatterBot",
 input_adapter="chatterbot.input.HipChat",
 hipchat_host="https://mydomain.hipchat.com",
 hipchat_room="my-room-name",
 hipchat_access_token="my-hipchat-access-token",
)

Mailgun input adapter

	
chatterbot.input.Mailgun(**kwargs)

	Get input from Mailgun.

The Mailgun adapter allows a chat bot to receive emails using
the Mailgun API [https://documentation.mailgun.com/api_reference.html].

-*- coding: utf-8 -*-
from chatterbot import ChatBot
from settings import MAILGUN

'''
To use this example, create a new file called settings.py.
In settings.py define the following:

MAILGUN = {
 "CONSUMER_KEY": "my-mailgun-api-key",
 "API_ENDPOINT": "https://api.mailgun.net/v3/my-domain.com/messages"
}
'''

Change these to match your own email configuration
FROM_EMAIL = "mailgun@salvius.org"
RECIPIENTS = ["gunthercx@gmail.com"]

bot = ChatBot(
 "Mailgun Example Bot",
 mailgun_from_address=FROM_EMAIL,
 mailgun_api_key=MAILGUN["CONSUMER_KEY"],
 mailgun_api_endpoint=MAILGUN["API_ENDPOINT"],
 mailgun_recipients=RECIPIENTS,
 input_adapter="chatterbot.input.Mailgun",
 output_adapter="chatterbot.output.Mailgun",
 storage_adapter="chatterbot.storage.SQLStorageAdapter",
 database="../database.db"
)

Send an example email to the address provided
response = bot.get_response("How are you?")
print("Check your inbox at ", RECIPIENTS)

Microsoft Bot Framework input adapter

	
chatterbot.input.Microsoft(**kwargs)

	An input adapter that allows a ChatterBot instance to get
input statements from a Microsoft Bot using Directline client protocol.
https://docs.botframework.com/en-us/restapi/directline/#navtitle

This is an input adapter that allows a ChatterBot instance to communicate
through Microsoft [https://docs.botframework.com/en-us/restapi/directline/#/Conversations] using direct line client protocol.

Be sure to also see the documentation for the Microsoft output adapter.

chatbot = ChatBot(
 "My ChatterBot",
 input_adapter="chatterbot.input.Microsoft",
 directline_host="https://directline.botframework.com",
 directline_conversation_id="IEyJvnDULgn",
 direct_line_token_or_secret="RCurR_XV9ZA.cwA.BKA.iaJrC8xpy8qbOF5xnR2vtCX7CZj0LdjAPGfiCpg4Fv0",
)

Creating a new input adapter

You can write your own input adapters by creating a new class that
inherits from InputAdapter and overrides the necessary
methods established in the base InputAdapter class.

	
chatterbot.input.InputAdapter(**kwargs)

	This is an abstract class that represents the
interface that all input adapters should implement.

To create your own input adapter you must override the process_input
method to return a Statement object.

Note that you may need to extend the __init__ method of your custom input
adapter if you intend to save a kwarg parameter that was passed into
the chat bot’s constructor.
(An API key might be an example of a parameter you would want to access here.)

from __future__ import unicode_literals
from chatterbot.adapters import Adapter

class InputAdapter(Adapter):
 """
 This is an abstract class that represents the
 interface that all input adapters should implement.
 """

 def process_input(self, *args, **kwargs):
 """
 Returns a statement object based on the input source.
 """
 raise self.AdapterMethodNotImplementedError()

 def process_input_statement(self, *args, **kwargs):
 """
 Return an existing statement object (if one exists).
 """
 input_statement = self.process_input(*args, **kwargs)

 self.logger.info('Received input statement: {}'.format(input_statement.text))

 existing_statement = self.chatbot.storage.find(input_statement.text)

 if existing_statement:
 self.logger.info('"{}" is a known statement'.format(input_statement.text))
 input_statement = existing_statement
 else:
 self.logger.info('"{}" is not a known statement'.format(input_statement.text))

 return input_statement

Output Adapters

	Creating a new output adapter

Output format adapter

	
chatterbot.output.OutputAdapter(**kwargs)

	A generic class that can be overridden by a subclass to provide extended
functionality, such as delivering a response to an API endpoint.

The output adapter allows the chat bot to return a response in
as a Statement object.

chatbot = ChatBot(
 "My ChatterBot",
 output_adapter="chatterbot.output.OutputAdapter",
 output_format="text"
)

Terminal output adapter

	
chatterbot.output.TerminalAdapter(**kwargs)

	A simple adapter that allows ChatterBot to
communicate through the terminal.

The output terminal adapter allows a user to type into their terminal to
communicate with the chat bot.

chatbot = ChatBot(
 "My ChatterBot",
 output_adapter="chatterbot.output.TerminalAdapter"
)

Gitter output adapter

	
chatterbot.output.Gitter(**kwargs)

	An output adapter that allows a ChatterBot instance to send
responses to a Gitter room.

chatbot = ChatBot(
 "My ChatterBot",
 output_adapter="chatterbot.output.Gitter",
 gitter_api_token="my-gitter-api-token",
 gitter_room="my-room-name",
 gitter_only_respond_to_mentions=True,
)

HipChat output adapter

	
chatterbot.output.HipChat(**kwargs)

	An output adapter that allows a ChatterBot instance to send
responses to a HipChat room.

This is an output adapter that allows a ChatterBot instance to send responses
to a HipChat [https://www.hipchat.com/] room.

Be sure to also see the documentation for the HipChat input adapter.

chatbot = ChatBot(
 "My ChatterBot",
 output_adapter="chatterbot.output.HipChat",
 hipchat_host="https://mydomain.hipchat.com",
 hipchat_room="my-room-name",
 hipchat_access_token="my-hipchat-access-token",
)

Microsoft Bot Framework output adapter

	
chatterbot.output.Microsoft(**kwargs)

	An output adapter that allows a ChatterBot instance to send
responses to a Microsoft bot using Direct Line client protocol.

This is an output adapter that allows a ChatterBot instance to send responses
to a Microsoft [https://docs.botframework.com/en-us/restapi/directline/#/Conversations] using Direct Line protocol.

Be sure to also see the documentation for the Microsoft input adapter.

chatbot = ChatBot(
 "My ChatterBot",
 output_adapter="chatterbot.output.Microsoft",
 directline_host="https://directline.botframework.com",
 conversation_id="IEyJvnDULgn",
 direct_line_token_or_secret="RCurR_XV9ZA.cwA.BKA.iaJrC8xpy8qbOF5xnR2vtCX7CZj0LdjAPGfiCpg4Fv0",
)

Mailgun output adapter

	
chatterbot.output.Mailgun(**kwargs)

	A generic class that can be overridden by a subclass to provide extended
functionality, such as delivering a response to an API endpoint.

The Mailgun adapter allows the chat bot to send emails using the
Mailgun API [https://documentation.mailgun.com/api_reference.html].

-*- coding: utf-8 -*-
from chatterbot import ChatBot
from settings import MAILGUN

'''
To use this example, create a new file called settings.py.
In settings.py define the following:

MAILGUN = {
 "CONSUMER_KEY": "my-mailgun-api-key",
 "API_ENDPOINT": "https://api.mailgun.net/v3/my-domain.com/messages"
}
'''

Change these to match your own email configuration
FROM_EMAIL = "mailgun@salvius.org"
RECIPIENTS = ["gunthercx@gmail.com"]

bot = ChatBot(
 "Mailgun Example Bot",
 mailgun_from_address=FROM_EMAIL,
 mailgun_api_key=MAILGUN["CONSUMER_KEY"],
 mailgun_api_endpoint=MAILGUN["API_ENDPOINT"],
 mailgun_recipients=RECIPIENTS,
 input_adapter="chatterbot.input.Mailgun",
 output_adapter="chatterbot.output.Mailgun",
 storage_adapter="chatterbot.storage.SQLStorageAdapter",
 database="../database.db"
)

Send an example email to the address provided
response = bot.get_response("How are you?")
print("Check your inbox at ", RECIPIENTS)

Creating a new output adapter

You can write your own output adapters by creating a new class that
inherits from chatterbot.output.OutputAdapter and overrides the
necessary methods established in the OutputAdapter class.

To create your own output adapter you must override the process_response
method to return a Statement object.

Note that you may need to extend the __init__ method of your custom output
adapter if you intend to save a kwarg parameter that was passed into
the chat bot’s constructor.
(An API key might be an example of a parameter you would want to access here.)

from chatterbot.adapters import Adapter

class OutputAdapter(Adapter):
 """
 A generic class that can be overridden by a subclass to provide extended
 functionality, such as delivering a response to an API endpoint.
 """

 def process_response(self, statement, session_id=None):
 """
 Override this method in a subclass to implement customized functionality.

 :param statement: The statement that the chat bot has produced in response to some input.

 :param session_id: The unique id of the current chat session.

 :returns: The response statement.
 """
 return statement

Storage Adapters

Storage adapters provide an interface that allows ChatterBot
to connect to different storage backends.

	Creating a new storage adapter

The storage adapter that your bot uses can be specified by setting
the storage_adapter parameter to the import path of the
storage adapter you want to use.

chatbot = ChatBot(
 "My ChatterBot",
 storage_adapter="chatterbot.storage.SQLStorageAdapter"
)

SQL Storage Adapter

	
class chatterbot.storage.SQLStorageAdapter(**kwargs)

	SQLStorageAdapter allows ChatterBot to store conversation
data semi-structured T-SQL database, virtually, any database
that SQL Alchemy supports.

	Notes:

	Tables may change (and will), so, save your training data.
There is no data migration (yet).
Performance test not done yet.
Tests using other databases not finished.

All parameters are optional, by default a sqlite database is used.

It will check if tables are present, if they are not, it will attempt
to create the required tables.

	Parameters

	
	database (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Used for sqlite database. Ignored if database_uri is specified.

	database_uri (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – eg: sqlite:///database_test.db”, use database_uri or database,
database_uri can be specified to choose database driver (database parameter will be ignored).

	read_only (bool [https://docs.python.org/3.4/library/functions.html#bool]) – False by default, makes all operations read only, has priority over all DB operations
so, create, update, delete will NOT be executed

	
add_to_conversation(conversation_id, statement, response)

	Add the statement and response to the conversation.

	
count()

	Return the number of entries in the database.

	
create()

	Populate the database with the tables.

	
create_conversation()

	Create a new conversation.

	
drop()

	Drop the database attached to a given adapter.

	
filter(**kwargs)

	Returns a list of objects from the database.
The kwargs parameter can contain any number
of attributes. Only objects which contain
all listed attributes and in which all values
match for all listed attributes will be returned.

	
find(statement_text)

	Returns a statement if it exists otherwise None

	
get_conversation_model()

	Return the conversation model.

	
get_latest_response(conversation_id)

	Returns the latest response in a conversation if it exists.
Returns None if a matching conversation cannot be found.

	
get_random()

	Returns a random statement from the database

	
get_response_model()

	Return the response model.

	
get_statement_model()

	Return the statement model.

	
get_tag_model()

	Return the conversation model.

	
remove(statement_text)

	Removes the statement that matches the input text.
Removes any responses from statements where the response text matches
the input text.

	
update(statement)

	Modifies an entry in the database.
Creates an entry if one does not exist.

MongoDB Storage Adapter

	
class chatterbot.storage.MongoDatabaseAdapter(**kwargs)

	The MongoDatabaseAdapter is an interface that allows
ChatterBot to store statements in a MongoDB database.

	Parameters

	database (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the database you wish to connect to.

database='chatterbot-database'

	Parameters

	database_uri (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The URI of a remote instance of MongoDB.

database_uri='mongodb://example.com:8100/'

	
add_to_conversation(conversation_id, statement, response)

	Add the statement and response to the conversation.

	
count()

	Return the number of entries in the database.

	
create_conversation()

	Create a new conversation.

	
deserialize_responses(response_list)

	Takes the list of response items and returns
the list converted to Response objects.

	
drop()

	Remove the database.

	
filter(**kwargs)

	Returns a list of statements in the database
that match the parameters specified.

	
find(statement_text)

	Returns a object from the database if it exists

	
get_latest_response(conversation_id)

	Returns the latest response in a conversation if it exists.
Returns None if a matching conversation cannot be found.

	
get_random()

	Returns a random statement from the database

	
get_response_model()

	Return the class for the response model.

	
get_response_statements()

	Return only statements that are in response to another statement.
A statement must exist which lists the closest matching statement in the
in_response_to field. Otherwise, the logic adapter may find a closest
matching statement that does not have a known response.

	
get_statement_model()

	Return the class for the statement model.

	
mongo_to_object(statement_data)

	Return Statement object when given data
returned from Mongo DB.

	
remove(statement_text)

	Removes the statement that matches the input text.
Removes any responses from statements if the response text matches the
input text.

	
update(statement)

	Modifies an entry in the database.
Creates an entry if one does not exist.

Creating a new storage adapter

You can write your own storage adapters by creating a new class that
inherits from StorageAdapter and overrides necessary
methods established in the base StorageAdapter class.

	
chatterbot.storage.StorageAdapter(base_query=None, *args, **kwargs)

	This is an abstract class that represents the interface
that all storage adapters should implement.

You will then need to implement the interface established by the StorageAdapter class.

import logging

class StorageAdapter(object):
 """
 This is an abstract class that represents the interface
 that all storage adapters should implement.
 """

 def __init__(self, base_query=None, *args, **kwargs):
 """
 Initialize common attributes shared by all storage adapters.
 """
 self.kwargs = kwargs
 self.logger = kwargs.get('logger', logging.getLogger(__name__))
 self.adapter_supports_queries = True
 self.base_query = None

 def get_model(self, model_name):
 """
 Return the model class for a given model name.
 """

 # The string must be lowercase
 model_name = model_name.lower()

 kwarg_model_key = '%s_model' % (model_name,)

 if kwarg_model_key in self.kwargs:
 return self.kwargs.get(kwarg_model_key)

 get_model_method = getattr(self, 'get_%s_model' % (model_name,))

 return get_model_method()

 def generate_base_query(self, chatterbot, session_id):
 """
 Create a base query for the storage adapter.
 """
 if self.adapter_supports_queries:
 for filter_instance in chatterbot.filters:
 self.base_query = filter_instance.filter_selection(chatterbot, session_id)

 def count(self):
 """
 Return the number of entries in the database.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `count` method is not implemented by this adapter.'
)

 def find(self, statement_text):
 """
 Returns a object from the database if it exists
 """
 raise self.AdapterMethodNotImplementedError(
 'The `find` method is not implemented by this adapter.'
)

 def remove(self, statement_text):
 """
 Removes the statement that matches the input text.
 Removes any responses from statements where the response text matches
 the input text.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `remove` method is not implemented by this adapter.'
)

 def filter(self, **kwargs):
 """
 Returns a list of objects from the database.
 The kwargs parameter can contain any number
 of attributes. Only objects which contain
 all listed attributes and in which all values
 match for all listed attributes will be returned.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `filter` method is not implemented by this adapter.'
)

 def update(self, statement):
 """
 Modifies an entry in the database.
 Creates an entry if one does not exist.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `update` method is not implemented by this adapter.'
)

 def get_latest_response(self, conversation_id):
 """
 Returns the latest response in a conversation if it exists.
 Returns None if a matching conversation cannot be found.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `get_latest_response` method is not implemented by this adapter.'
)

 def create_conversation(self):
 """
 Creates a new conversation.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `create_conversation` method is not implemented by this adapter.'
)

 def add_to_conversation(self, conversation_id, statement, response):
 """
 Add the statement and response to the conversation.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `add_to_conversation` method is not implemented by this adapter.'
)

 def get_random(self):
 """
 Returns a random statement from the database.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `get_random` method is not implemented by this adapter.'
)

 def drop(self):
 """
 Drop the database attached to a given adapter.
 """
 raise self.AdapterMethodNotImplementedError(
 'The `drop` method is not implemented by this adapter.'
)

 def get_response_statements(self):
 """
 Return only statements that are in response to another statement.
 A statement must exist which lists the closest matching statement in the
 in_response_to field. Otherwise, the logic adapter may find a closest
 matching statement that does not have a known response.

 This method may be overridden by a child class to provide more a
 efficient method to get these results.
 """
 statement_list = self.filter()

 responses = set()
 to_remove = list()
 for statement in statement_list:
 for response in statement.in_response_to:
 responses.add(response.text)
 for statement in statement_list:
 if statement.text not in responses:
 to_remove.append(statement)

 for statement in to_remove:
 statement_list.remove(statement)

 return statement_list

 class EmptyDatabaseException(Exception):

 def __init__(self, value='The database currently contains no entries. At least one entry is expected. You may need to train your chat bot to populate your database.'):
 self.value = value

 def __str__(self):
 return repr(self.value)

 class AdapterMethodNotImplementedError(NotImplementedError):
 """
 An exception to be raised when a storage adapter method has not been implemented.
 Typically this indicates that the method should be implement in a subclass.
 """
 pass

Filters

Filters are an efficient way to create base queries that can be passed to ChatterBot’s storage adapters.
Filters will reduce the number of statements that a chat bot has to process when it is selecting a response.

	How to create a new filter for ChatterBot
	Filter Queries

	Filter Support

Setting filters

chatbot = ChatBot(
 "My ChatterBot",
 filters=["chatterbot.filters.RepetitiveResponseFilter"]
)

Filter classes

	
class chatterbot.filters.RepetitiveResponseFilter

	A filter that eliminates possibly repetitive responses to prevent
a chat bot from repeating statements that it has recently said.

	
filter_selection(chatterbot, conversation_id)

	Because this is the base filter class, this method just
returns the storage adapter’s base query. Other filters
are expected to override this method.

How to create a new filter for ChatterBot

This is the basic outline of the code that your filter will need to follow.
Each filter should inherit from ChatterBot’s Filter class and implement a
method called filter_selection. Everything else that your filter does is
up to you.

from chatterbot.filters import Filter

class MyFilter(Filter):

 def filter_selection(self, chatterbot):
 # ...
 return query

Filter Queries

Filters use a storage adapter’s query object to build a query that the adapter
can evaluate. The available query methods currently are:

statement_text_equals(statement_text)

This query method returns the current query with the added constraint that the text
attribute of any statement returned must be equal to the text specified in
the parameter.

statement_text_not_in(statements)

This query method takes a list of statement text values and returns the
current query with the added constraint that any statements returned cannot
exist in the list specified.

statement_response_list_contains(statement_text)

This query method takes a single statement text value and returns the
current query with the added constraint that any statements returned
must contain the specified text as a response.

statement_response_list_equals(response_list)

This query method takes a list of statement text values and returns the
current query with the added constraint that any statements returned must
have an exactly matching list of response values.

Filter Support

Not all storage adapters support filters. If a storage adapter does not support
filters, then queries generated by filters will be ignored when using that
storage adapter.

A storage adapter only supports filters if it supports querying.
You can tell if a storage adapter supports querying by checking
if its adapter_supports_queries property is set to true.

ChatterBot

The main class ChatBot is a connecting point between each of
ChatterBot’s adapters. In this class, an input statement is returned
from the input adapter, processed and stored by the logic adapter
and storage adapter, and then passed to the output adapter to be returned
to the user.

	
class chatterbot.ChatBot(name, **kwargs)

	A conversational dialog chat bot.

	Parameters

	
	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – A name is the only required parameter for the ChatBot class.

	storage_adapter (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The dot-notated import path to a storage adapter class.
Defaults to "chatterbot.storage.SQLStorageAdapter".

	logic_adapters (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of dot-notated import paths to each logic adapter the bot uses.
Defaults to ["chatterbot.logic.BestMatch"].

	input_adapter (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The dot-notated import path to an input adapter class.
Defaults to "chatterbot.input.VariableInputTypeAdapter".

	output_adapter (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The dot-notated import path to an output adapter class.
Defaults to "chatterbot.output.OutputAdapter".

	trainer (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The dot-notated import path to the training class to be used with the chat bot.

	filters (list [https://docs.python.org/3.4/library/stdtypes.html#list]) – A list of dot-notated import paths to filter classes to be used by the chat bot.

	logger (logging.Logger [https://docs.python.org/3.4/library/logging.html#logging.Logger]) – A Logger object.

	
generate_response(input_statement, conversation_id)

	Return a response based on a given input statement.

	
get_response(input_item, conversation_id=None)

	Return the bot’s response based on the input.

	Parameters

	
	input_item – An input value.

	conversation_id – The id of a conversation.

	Returns

	A response to the input.

	Return type

	Statement

	
initialize()

	Do any work that needs to be done before the responses can be returned.

	
learn_response(statement, previous_statement)

	Learn that the statement provided is a valid response.

	
set_trainer(training_class, **kwargs)

	Set the module used to train the chatbot.

	Parameters

	
	training_class (Trainer) – The training class to use for the chat bot.

	**kwargs – Any parameters that should be passed to the training class.

	
train

	Proxy method to the chat bot’s trainer class.

Example chat bot parameters

ChatBot(
 'Northumberland',
 storage_adapter='my.storage.AdapterClass',
 logic_adapters=[
 'my.logic.AdapterClass1',
 'my.logic.AdapterClass2'
],
 input_adapter='my.input.AdapterClass',
 output_adapter='my.output.AdapterClass',
 trainer='my.trainer.TrainerClass',
 filters=[
 'my.filter.FilterClass1',
 'my.filter.FilterClass2'
],
 logger=custom_logger
)

Example expanded chat bot parameters

It is also possible to pass parameters directly to individual adapters.
To do this, you must use a dictionary that contains a key called import_path
which specifies the import path to the adapter class.

ChatBot(
 'Leander Jenkins',
 storage_adapter={
 'import_path': 'my.storage.AdapterClass',
 'database_name': 'my-database'
 },
 logic_adapters=[
 {
 'import_path': 'my.logic.AdapterClass1',
 'statement_comparison_function': 'chatterbot.comparisons.levenshtein_distance'
 'response_selection_method': 'chatterbot.response_selection.get_first_response'
 },
 {
 'import_path': 'my.logic.AdapterClass2',
 'statement_comparison_function': 'my.custom.comparison_function'
 'response_selection_method': 'my.custom.selection_method'
 }
],
 input_adapter={
 'import_path': 'my.input.AdapterClass',
 'api_key': '0000-1111-2222-3333-DDDD'
 },
 output_adapter={
 'import_path': 'my.output.AdapterClass',
 'api_key': '0000-1111-2222-3333-DDDD'
 }
)

Enable logging

ChatterBot has built in logging. You can enable ChatterBot’s
logging by setting the logging level in your code.

import logging

logging.basicConfig(level=logging.INFO)

ChatBot(
 # ...
)

The logging levels available are
CRITICAL, ERROR, WARNING, INFO, DEBUG, and NOTSET.
See the Python logging documentation [https://docs.python.org/3/library/logging.html#logging-levels] for more information.

Using a custom logger

You can choose to use your own custom logging class with your chat bot.
This can be useful when testing and debugging your code.

import logging

custom_logger = logging.getLogger(__name__)

ChatBot(
 # ...
 logger=custom_logger
)

Adapters

ChatterBot uses adapter modules to control the behavior of specific types of tasks.
There are four distinct types of adapters that ChatterBot uses,
these are storage adapters, input adapters, output adapters and logic adapters.

Adapters types

	Storage adapters - Provide an interface for ChatterBot to connect to various storage systems such as MongoDB [https://docs.mongodb.com/] or local file storage.

	Input adapters - Provide methods that allow ChatterBot to get input from a defined data source.

	Output adapters - Provide methods that allow ChatterBot to return a response to a defined data source.

	Logic adapters - Define the logic that ChatterBot uses to respond to input it receives.

Accessing the chatbot instance

When ChatterBot initializes each adapter, it sets an attribute named chatbot.
The chatbot variable makes it possible for each adapter to have access to all of the other adapters being used.
Suppose two input and output adapters need to share some information or perhaps you want to give your logic adapter
direct access to the storage adapter. These are just a few cases where this functionality is useful.

Each adapter can be accessed on the chatbot object from within an adapter by referencing self.chatbot.
Then, self.chatbot.storage refers to the storage adapter, self.chatbot.input refers to the input adapter,
self.chatbot.output refers to the current output adapter, and self.chatbot.logic refers to the logic adapters.

Conversations

ChatterBot supports the ability to have multiple concurrent conversations.
A conversations is where the chat bot interacts with a person, and supporting
multiple concurrent conversations means that the chat bot can have multiple
different conversations with different people at the same time.

Conversation scope

If two ChatBot instances are created, each will have conversations separate from each other.

An adapter can access any conversation as long as the unique identifier for the conversation is provided.

Conversation example

The following example is taken from the Django ChatterBotView built into ChatterBot.
In this method, the unique identifiers for each chat session are being stored in Django’s
session objects. This allows different users who interact with the bot through different
web browsers to have separate conversations with the chat bot.

def post(self, request, *args, **kwargs):
 """
 Return a response to the statement in the posted data.
 """
 input_data = json.loads(request.read().decode('utf-8'))

 self.validate(input_data)

 conversation = self.get_conversation(request)

 response = self.chatterbot.get_response(input_data, conversation.id)
 response_data = response.serialize()

 return JsonResponse(response_data, status=200)

Statements

ChatterBot’s statement objects represent either an input statement that the
chat bot has received from a user, or an output statement that the chat bot
has returned based on some input.

	
class chatterbot.conversation.Statement(text, **kwargs)

	A statement represents a single spoken entity, sentence or
phrase that someone can say.

	
confidence = None

	ChatterBot’s logic adapters assign a confidence score to the statement
before it is returned. The confidence score indicates the degree of
certainty with which the chat bot believes this is the correct response
to the given input.

	
exception InvalidTypeException(value='Received an unexpected value type.')

	

	
add_extra_data(key, value)

	This method allows additional data to be stored on the statement object.

Typically this data is something that pertains just to this statement.
For example, a value stored here might be the tagged parts of speech for
each word in the statement text.

	key = ‘pos_tags’

	value = [(‘Now’, ‘RB’), (‘for’, ‘IN’), (‘something’, ‘NN’), (‘different’, ‘JJ’)]

	Parameters

	
	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The key to use in the dictionary of extra data.

	value – The value to set for the specified key.

	
add_response(response)

	Add the response to the list of statements that this statement is in response to.
If the response is already in the list, increment the occurrence count of that response.

	Parameters

	response (Response) – The response to add.

	
get_response_count(statement)

	Find the number of times that the statement has been used
as a response to the current statement.

	Parameters

	statement (Statement) – The statement object to get the count for.

	Returns

	Return the number of times the statement has been used as a response.

	Return type

	int [https://docs.python.org/3.4/library/functions.html#int]

	
remove_response(response_text)

	Removes a response from the statement’s response list based
on the value of the response text.

	Parameters

	response_text (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The text of the response to be removed.

	
response_statement_cache

	This property is to allow ChatterBot Statement objects to
be swappable with Django Statement models.

	
save()

	Save the statement in the database.

	
serialize()

	
	Returns

	A dictionary representation of the statement object.

	Return type

	dict [https://docs.python.org/3.4/library/stdtypes.html#dict]

Responses

ChatterBot’s response objects represent the relationship between two
statements. A response indicates that one statement was issued in
response to another statement.

	
class chatterbot.conversation.Response(text, **kwargs)

	A response represents an entity which response to a statement.

Statement-response relationship

ChatterBot stores knowledge of conversations as statements. Each statement can have any
number of possible responses.

[image: ChatterBot statement-response relationship]Each Statement object has an in_response_to reference which links the
statement to a number of other statements that it has been learned to be in response to.
The in_response_to attribute is essentially a reference to all parent statements
of the current statement.

[image: ChatterBot statement relationship]The Response object’s occurrence attribute indicates the number of times
that the statement has been given as a response. This makes it possible for the chat bot
to determine if a particular response is more commonly used than another.

Comparisons

Statement comparison

ChatterBot uses Statement objects to hold information
about things that can be said. An important part of how a chat bot
selects a response is based on its ability to compare two statements
to each other. There are a number of ways to do this, and ChatterBot
comes with a handful of methods built in for you to use.

	
class chatterbot.comparisons.JaccardSimilarity

	Calculates the similarity of two statements based on the Jaccard index.

The Jaccard index is composed of a numerator and denominator.
In the numerator, we count the number of items that are shared between the sets.
In the denominator, we count the total number of items across both sets.
Let’s say we define sentences to be equivalent if 50% or more of their tokens are equivalent.
Here are two sample sentences:

The young cat is hungry.
The cat is very hungry.

When we parse these sentences to remove stopwords, we end up with the following two sets:

{young, cat, hungry}
{cat, very, hungry}

In our example above, our intersection is {cat, hungry}, which has count of two.
The union of the sets is {young, cat, very, hungry}, which has a count of four.
Therefore, our Jaccard similarity index [https://en.wikipedia.org/wiki/Jaccard_index] is two divided by four, or 50%.
Given our similarity threshold above, we would consider this to be a match.

	
compare(statement, other_statement)

	Return the calculated similarity of two
statements based on the Jaccard index.

	
initialize_nltk_wordnet()

	Download the NLTK wordnet corpora that is required for this algorithm
to run only if the corpora has not already been downloaded.

	
class chatterbot.comparisons.LevenshteinDistance

	Compare two statements based on the Levenshtein distance
of each statement’s text.

For example, there is a 65% similarity between the statements
“where is the post office?” and “looking for the post office”
based on the Levenshtein distance algorithm.

	
compare(statement, other_statement)

	Compare the two input statements.

	Returns

	The percent of similarity between the text of the statements.

	Return type

	float [https://docs.python.org/3.4/library/functions.html#float]

	
class chatterbot.comparisons.SentimentComparison

	Calculate the similarity of two statements based on the closeness of
the sentiment value calculated for each statement.

	
compare(statement, other_statement)

	Return the similarity of two statements based on
their calculated sentiment values.

	Returns

	The percent of similarity between the sentiment value.

	Return type

	float [https://docs.python.org/3.4/library/functions.html#float]

	
initialize_nltk_vader_lexicon()

	Download the NLTK vader lexicon for sentiment analysis
that is required for this algorithm to run.

	
class chatterbot.comparisons.SynsetDistance

	Calculate the similarity of two statements.
This is based on the total maximum synset similarity between each word in each sentence.

This algorithm uses the wordnet [http://www.nltk.org/howto/wordnet.html] functionality of NLTK [http://www.nltk.org/] to determine the similarity
of two statements based on the path similarity between each token of each statement.
This is essentially an evaluation of the closeness of synonyms.

	
compare(statement, other_statement)

	Compare the two input statements.

	Returns

	The percent of similarity between the closest synset distance.

	Return type

	float [https://docs.python.org/3.4/library/functions.html#float]

	
initialize_nltk_punkt()

	Download required NLTK corpora if they have not already been downloaded.

	
initialize_nltk_stopwords()

	Download required NLTK corpora if they have not already been downloaded.

	
initialize_nltk_wordnet()

	Download required NLTK corpora if they have not already been downloaded.

Use your own comparison function

You can create your own comparison function and use it as long as the function takes two statements
as parameters and returns a numeric value between 0 and 1. A 0 should represent the lowest possible
similarity and a 1 should represent the highest possible similarity.

def comparison_function(statement, other_statement):

 # Your comparison logic

 # Return your calculated value here
 return 0.0

Setting the comparison method

To set the statement comparison method for your chat bot, you
will need to pass the statement_comparison_function parameter
to your chat bot when you initialize it. An example of this
is shown below.

from chatterbot import ChatBot
from chatterbot.comparisons import levenshtein_distance

chatbot = ChatBot(
 # ...
 statement_comparison_function=levenshtein_distance
)

Utility Methods

ChatterBot has a utility module that contains
a collection of miscellaneous but useful functions.

Module imports

	
chatterbot.utils.import_module(dotted_path)

	Imports the specified module based on the
dot notated import path for the module.

Class initialization

	
chatterbot.utils.initialize_class(data, **kwargs)

	
	Parameters

	data – A string or dictionary containing a import_path attribute.

Terminal input

	
chatterbot.utils.input_function()

	Normalizes reading input between python 2 and 3.
The function ‘raw_input’ becomes ‘input’ in Python 3.

NLTK corpus downloader

	
chatterbot.utils.nltk_download_corpus(resource_path)

	Download the specified NLTK corpus file
unless it has already been downloaded.

Returns True if the corpus needed to be downloaded.

Stopword removal

	
chatterbot.utils.remove_stopwords(tokens, language)

	Takes a language (i.e. ‘english’), and a set of word tokens.
Returns the tokenized text with any stopwords removed.
Stop words are words like “is, the, a, …”

Be sure to download the required NLTK corpus before calling this function:
- from chatterbot.utils import nltk_download_corpus
- nltk_download_corpus(‘corpora/stopwords’)

ChatBot response time

	
chatterbot.utils.get_response_time(chatbot)

	Returns the amount of time taken for a given
chat bot to return a response.

	Parameters

	chatbot (ChatBot) – A chat bot instance.

	Returns

	The response time in seconds.

	Return type

	float [https://docs.python.org/3.4/library/functions.html#float]

Parsing datetime information

	
chatterbot.parsing.datetime_parsing(text, base_date=datetime.datetime(2019, 1, 25, 12, 58, 27, 816651))

	Extract datetime objects from a string of text.

ChatterBot Corpus

This is a corpus of dialog data that is included in the chatterbot module.

Additional information about the chatterbot-corpus module can be found
in the ChatterBot Corpus Documentation [http://chatterbot-corpus.readthedocs.io/].

Corpus language availability

Corpus data is user contributed, but it is also not difficult to create one if you are familiar with the language.
This is because each corpus is just a sample of various input statements and their responses for the bot to train itself with.

To explore what languages and collections of corpora are available,
check out the chatterbot_corpus/data [https://github.com/gunthercox/chatterbot-corpus/tree/master/chatterbot_corpus/data] directory in the separate chatterbot-corpus repository.

Note

If you are interested in contributing content to the corpus, please feel free to
submit a pull request on ChatterBot’s corpus GitHub page. Contributions are welcomed!

https://github.com/gunthercox/chatterbot-corpus

The chatterbot-corpus is distributed in its own Python package so that it can
be released and upgraded independently from the chatterbot package.

Exporting your chat bot’s database as a training corpus

Now that you have created your chat bot and sent it out into the world, perhaps
you are looking for a way to share what it has learned with other chat bots?
ChatterBot’s training module provides methods that allow you to export the
content of your chat bot’s database as a training corpus that can be used to
train other chat bots.

chatbot = ChatBot('Export Example Bot')
chatbot.trainer.export_for_training('./export.yml')

Here is an example:

-*- coding: utf-8 -*-
from chatterbot import ChatBot

'''
This is an example showing how to create an export file from
an existing chat bot that can then be used to train other bots.
'''

chatbot = ChatBot(
 'Export Example Bot',
 trainer='chatterbot.trainers.ChatterBotCorpusTrainer'
)

First, lets train our bot with some data
chatbot.train('chatterbot.corpus.english')

Now we can export the data to a file
chatbot.trainer.export_for_training('./my_export.json')

Django Integration

ChatterBot has direct support for integration with Django. ChatterBot provides
out of the box models and endpoints that allow you build ChatterBot powered
Django applications.

	Chatterbot Django Settings
	Additional Django settings

	Django Training
	Management command

	Training settings

	ChatterBot Django Views
	API Views

	Webservices
	WSGI

	Hosting static files

Install packages

Begin by making sure that you have installed both django and chatterbot.

pip install django chatterbot

For more details on installing Django, see the Django documentation [https://docs.djangoproject.com/en/dev/intro/install/].

Installed Apps

Add chatterbot.ext.django_chatterbot to your INSTALLED_APPS

INSTALLED_APPS = (
 # ...
 'chatterbot.ext.django_chatterbot',
)

API view

If you need an API endpoint for your chat bot you can add the following
to your Django urls.py file. You can also choose to create your own views
and end endpoints as needed.

urlpatterns = patterns(
 ...
 url(
 r'^chatterbot/',
 include('chatterbot.ext.django_chatterbot.urls',
 namespace='chatterbot')
),
)

Migrations

You can run the Django database migrations for your chat bot with the
following command.

python manage.py migrate django_chatterbot

Note

Looking for a working example? Check our the example Django app using
ChatterBot on GitHub:
https://github.com/gunthercox/ChatterBot/tree/master/examples/django_app

MongoDB and Django

ChatterBot has a storage adapter for MongoDB but it does not work with Django.
If you want to use MongoDB as your database for Django and your chat bot then
you will need to install a Django storage backend such as Django MongoDB Engine [https://django-mongodb-engine.readthedocs.io/].

The reason this is required is because Django’s storage backends are different
and completely separate from ChatterBot’s storage adapters.

Chatterbot Django Settings

You can edit the ChatterBot configuration through your Django settings.py file.

CHATTERBOT = {
 'name': 'Tech Support Bot',
 'logic_adapters': [
 'chatterbot.logic.MathematicalEvaluation',
 'chatterbot.logic.TimeLogicAdapter',
 'chatterbot.logic.BestMatch'
],
 'trainer': 'chatterbot.trainers.ChatterBotCorpusTrainer',
 'training_data': [
 'chatterbot.corpus.english.greetings'
]
}

Any setting that gets set in the CHATTERBOT dictionary will be passed to the chat bot that powers your django app.

Additional Django settings

	django_app_name [default: ‘django_chatterbot’] The Django app name to look up the models from.

Django Training

Management command

When using ChatterBot with Django, the training process can be
executed by running the training management command.

python manage.py train

Training settings

You can specify any data that you want to be passed to the chat bot
trainer in the training_data parameter in your CHATTERBOT
Django settings.

CHATTERBOT = {
 # ...
 'trainer': 'chatterbot.trainers.ChatterBotCorpusTrainer',
 'training_data': [
 'chatterbot.corpus.english.greetings'
]
}

Note

You can also specify paths to corpus files or directories of corpus files in the training_data list.

See the documentation for the Training classes for other training class options that can be used here.

ChatterBot Django Views

API Views

ChatterBot’s django module comes with a pre-built API view that you can make
requests against to communicate with your bot from your web application.

The endpoint expects a JSON request with the following data:

{"text": "My input statement"}

Note

You will need to include ChatterBot’s urls in your django url configuration
before you can make requests to these views. See the setup instructions for
more details.

Webservices

If you want to host your Django app, you need to choose a method through
which it will be hosted. There are a few free services that you can use
to do this such as Heroku [https://dashboard.heroku.com/] and PythonAnyWhere [https://www.pythonanywhere.com/details/django_hosting].

WSGI

A common method for serving Python web applications involves using a
Web Server Gateway Interface (WSGI [http://wsgi.readthedocs.io/en/latest/what.html]) package.

Gunicorn [http://gunicorn.org/] is a great choice for a WSGI server. They have detailed
documentation and installation instructions on their website.

Hosting static files

There are numerous ways to host static files for your Django application.
One extreemly easy way to do this is by using WhiteNoise [http://whitenoise.evans.io/en/stable/], a python package
designed to make it possible to serve static files from just about any web application.

Frequently Asked Questions

This document is comprised of questions that are frequently
asked about ChatterBot and chat bots in general.

	Python String Encoding
	Does ChatterBot handle non-ascii characters?

	How do I fix Python encoding errors?

How do I deploy my chat bot to the web?

There are a number of excellent web frameworks for creating
Python projects out there. Django and Flask are two excellent
examples of these. ChatterBot is designed to be agnostic to
the platform it is deployed on and it is very easy to get set up.

To run ChatterBot inside of a web application you just need a way
for your application to receive incoming data and to return data.
You can do this any way you want, HTTP requests, web sockets, etc.

There are a number of existing examples that show how to do this.

	An example using Django: https://github.com/gunthercox/ChatterBot/tree/master/examples/django_app

	An example using Flask: https://github.com/chamkank/flask-chatterbot/blob/master/app.py

Additional details and recommendations for configuring Django can be found
in the Webservices section of ChatterBot’s Django documentation.

What kinds of machine learning does ChatterBot use?

In brief, ChatterBot uses a number of different machine learning techniques to
generate its responses. The specific algorithms depend on how the chat bot is
used and the settings that it is configured with.

Here is a general overview of some of the various machine learning techniques
that are employed throughout ChatterBot’s codebase.

1. Search algorithms

Searching is the most rudimentary form of artificial intelligence. To be fair,
there are differences between machine learning and artificial intelligence but
lets avoid those for now and instead focus on the topic of algorithms that make
the chat bot talk intelligently.

Search is a crucial part of how a chat bot quickly and efficiently retrieves
the possible candidate statements that it can respond with.

Some examples of attributes that help the chat bot select a response include

	the similarity of an input statement to known statements

	the frequency in which similar known responses occur

	the likeliness of an input statement to fit into a category that known statements are a part of

2. Classification algorithms

Several logic adapters in ChatterBot use naive Bayesian classification [https://en.wikipedia.org/wiki/Naive_Bayes_classifier]
algorithms to determine if an input statement meets a particular set of
criteria that warrant a response to be generated from that logic adapter.

Python String Encoding

The Python developer community has published a great article that covers the
details of unicode character processing.

	Python 3: https://docs.python.org/3/howto/unicode.html

	Python 2: https://docs.python.org/2/howto/unicode.html

The following notes are intended to help answer some common questions and issues
that developers frequently encounter while learning to properly work with different
character encodings in Python.

Does ChatterBot handle non-ascii characters?

ChatterBot is able to handle unicode values correctly. You can pass to it
non-encoded data and it should be able to process it properly
(you will need to make sure that you decode the output that is returned).

Below is one of ChatterBot’s tests from tests/test_chatbot.py [https://github.com/gunthercox/ChatterBot/blob/master/tests/test_chatbot.py],
this is just a simple check that a unicode response can be processed.

def test_get_response_unicode(self):
 """
 Test the case that a unicode string is passed in.
 """
 response = self.chatbot.get_response(u'سلام')
 self.assertGreater(len(response.text), 0)

This test passes in both Python 2.7 and 3.x. It also verifies that
ChatterBot can take unicode input without issue.

How do I fix Python encoding errors?

When working with string type data in Python, it is possible to encounter errors
such as the following.

UnicodeDecodeError: 'utf8' codec can't decode byte 0x92 in position 48: invalid start byte

Depending on what your code looks like, there are a few things that you can do
to prevent errors like this.

Unicode header

-*- coding: utf-8 -*-

When to use the unicode header

If your strings use escaped unicode characters (they look like u'\u00b0C') then
you do not need to add the header. If you use strings like 'ØÆÅ' then you are required
to use the header.

If you are using this header it must be the first line in your Python file.

Unicode escape characters

>>> print u'\u0420\u043e\u0441\u0441\u0438\u044f'
Россия

When to use escape characters

Prefix your strings with the unicode escape character u'...' when you are
using escaped unicode characters.

Import unicode literals from future

from __future__ import unicode_literals

When to import unicode literals

Use this when you need to make sure that Python 3 code also works in Python 2.

A good article on this can be found here: http://python-future.org/unicode_literals.html

Command line tools

ChatterBot comes with a few command line tools that can help

Get the installed ChatterBot version

If have ChatterBot installed and you want to check what version
you have then you can run the following command.

python -m chatterbot --version

Locate NLTK data

ChatterBot uses the Natural Language Toolkit (NLTK) for various
language processing functions. ChatterBot downloads additional
data that is required by NLTK. The following command can be used
to find all NLTK data directories that contain files.

python -m chatterbot list_nltk_data

Development

As the code for ChatterBot is written, the developers attempt to describe
the logic and reasoning for the various decisions that go into creating the
internal structure of the software. This internal documentation is intended
for future developers and maintaners of the project. A majority of this
information is unnecessary for the typical developer using ChatterBot.

It is not always possible for every idea to be documented. As a result, the
need may arise to question the developers and maintainers of this project
in order to pull concepts from their minds and place them in these documents.
Please pull gently.

	Contributing to ChatterBot
	Setting Up a Development Environment

	Reporting a Bug

	Requesting New Features

	Contributing Documentation

	Contributing Code

	Releasing ChatterBot
	Versioning

	Release Process

	Release Notes [https://github.com/gunthercox/ChatterBot/releases]

	Unit Testing
	ChatterBot tests

	Django integration tests

	Django example app tests

	Benchmark tests

	Running all the tests

	Packaging your code for ChatterBot
	Package directory structure

Contributing to ChatterBot

There are numerous ways to contriubte to ChatterBot. All of which are highly encouraged.

	Contributing bug reports and feature requests

	Contributing documentation

	Contributing code for new features

	Contributing fixes for bugs

Every bit of help received on this project is highly appreciated.

Setting Up a Development Environment

To contribute to ChatterBot’s development, you simply need:

	Python

	pip

	A few python packages:

pip install requirements.txt
pip install dev-requirements.txt

	A text editor

Reporting a Bug

If you discover a bug in ChatterBot and wish to report it, please be
sure that you adhere to the following when you report it on GitHub.

	Before creating a new bug report, please search to see if an open or closed report matching yours already exists.

	Please include a description that will allow others to recreate the problem you encountered.

Requesting New Features

When requesting a new feature in ChatterBot, please make sure to include
the following details in your request.

	Your use case. Describe what you are doing that requires this new functionality.

Contributing Documentation

ChatterBot’s documentation is written in reStructuredText and is
compiled by Sphinx. The reStructuredText source of the documentation
is located in docs/.

To build the documentation yourself, run:

sphinx-build ./docs/ ./build/

You can then open the index.html file that will be created in the build directory.

Contributing Code

The development of ChatterBot happens on GitHub. Code contributions should be
submitted there in the form of pull requests.

Pull requests should meet the following criteria.

	Fix one issue and fix it well.

	Do not include extraneous changes that do not relate to the issue being fixed.

	Include a descriptive title and description for the pull request.

	Have descriptive commit messages.

Releasing ChatterBot

ChatterBot follows the following rules when it comes to new versions and updates.

Versioning

ChatterBot follows semantic versioning as a set of guidelines for release versions.

	Major releases (2.0.0, 3.0.0, etc.) are used for large, almost
entirely backwards incompatible changes.

	Minor releases (2.1.0, 2.2.0, 3.1.0, 3.2.0, etc.) are used for
releases that contain small, backwards incompatible changes. Known
backwards incompatibilities will be described in the release notes.

	Patch releases (e.g., 2.1.1, 2.1.2, 3.0.1, 3.0.10, etc.) are used
for releases that contain bug fixes, features and dependency changes.

Release Process

The following procedure is used to finalize a new version of ChatterBot.

	We make sure that all CI tests on the master branch are passing.

	We tag the release on GitHub.

	A new package is generated from the latest version of the master branch.

python setup.py sdist bdist_wheel

	The Python package files are uploaded to PyPi.

twine upload dist/*

Unit Testing

“A true professional does not waste the time and money of other people by handing over software that is not reasonably free of obvious bugs;
that has not undergone minimal unit testing; that does not meet the specifications and requirements;
that is gold-plated with unnecessary features; or that looks like junk.” – Daniel Read

ChatterBot tests

ChatterBot’s built in tests can be run using nose.
See the nose documentation [https://nose.readthedocs.org/en/latest/] for more information.

nosetests

Note that nose also allows you to specify individual test cases to run.
For example, the following command will run all tests in the test-module tests/logic_adapter_tests

nosetests tests/logic_adapter_tests

Django integration tests

Tests for Django integration have been included in the tests_django directory and
can be run with:

python runtests.py

Django example app tests

Tests for the example Django app can be run with the following command from within the examples/django_app directory.

python manage.py test

Benchmark tests

You can run a series of benchmark tests that test a variety of different chat bot configurations for
performance by running the following command.

python tests/benchmarks.py

Running all the tests

You can run all of ChatterBot’s tests with a single command: tox.

Tox is a tool for managing virtual environments and running tests.

Installing tox

You can install tox with pip.

pip install tox

Using tox

When you run the tox command from within the root directory of
the ChatterBot repository it will run the following tests:

	Tests for ChatterBot’s core files.

	Tests for ChatterBot’s integration with multiple versions of Django.

	Tests for each of ChatterBot’s example files.

	Tests to make sure ChatterBot’s documentation builds.

	Code style and validation checks (linting).

	Benchmarking tests for performance.

You can run specific tox environments using the -e flag.
A few examples include:

Run the documentation tests
tox -e docs

Run the tests with Django 1.10
tox -e django110

Run the code linting scripts
tox -e lint

To see the list of all available environments that you can run tests for:

tox -l

To run tests for all environments:

tox

Packaging your code for ChatterBot

There are cases where developers may want to contribute code to ChatterBot but for
various reasons it doesn’t make sense or isn’t possible to add the code to the
main ChatterBot repository on GitHub.

Common reasons that code can’t be contributed include:

	Licencing: It may not be possible to contribute code to ChatterBot due to a licencing restriction or a copyright.

	Demand: There needs to be a general demand from the open source community for a particular feature so that there are developers who will want to fix and improve the feature if it requires maintenance.

In addition, all code should be well documented and thoroughly tested.

Package directory structure

Suppose we want to create a new logic adapter for ChatterBot and add it the
Python Package Index (PyPI) so that other developers can install it and use it.
We would begin doing this by setting up a directory file the following structure.

Python Module Structure

IronyAdapter/
|-- README
|-- setup.py
|-- irony_adapter
| |-- __init__.py
| |-- logic.py
|-- tests
|-- |-- __init__.py
|-- |-- test_logic.py

More information on creating Python packages can be found here:
https://packaging.python.org/tutorials/distributing-packages/

Register on PyPI

Create an account: https://pypi.python.org/pypi?%3Aaction=register_form

Create a .pypirc configuration file.

.pypirc file contents

[distutils]
index-servers =
pypi

[pypi]
username=my_username
password=my_password

Generate packages

python setup.py sdist bdist_wheel

Upload packages

The official tool for uploading Python packages is called twine.
You can install twine with pip if you don’t already have it installed.

pip install twine

twine upload dist/*

Install your package locally

cd IronyAdapter
pip install . --upgrade

Using your package

If you are creating a module that ChatterBot imports from a dotted module path then you
can set the following in your chat bot.

chatbot = ChatBot(
 "My ChatBot",
 logic_adapters=[
 "irony_adapter.logic.IronyAdapter"
]
)

Testing your code

from unittest import TestCase

class IronyAdapterTestCase(TestCase):
 """
 Test that the irony adapter allows
 the chat bot to understand irony.
 """

 def test_irony(self):
 # TODO: Implement test logic
 self.assertTrue(response.irony)

Glossary

	adapters

	A pluggable class that allows a ChatBot instance to execute some kind of functionality.

	logic adapter

	An adapter class that allows a ChatBot instance to select a response to

	storage adapter

	A class that allows a chat bot to store information somewhere, such as a database.

	input adapter

	An adapter class that gets input from somewhere and provides it to the chat bot.

	output adapter

	An adapter class that returns a chat bot’s response.

	corpus

	In linguistics, a corpus (plural corpora) or text corpus is a large
and structured set of texts. They are used to do statistical analysis
and hypothesis testing, checking occurrences or validating linguistic
rules within a specific language territory 1.

	preprocessors

	A member of a list of functions that can be used to modify text
input that the chat bot receives before the text is passed to
the logic adapter for processing.

	statement

	A single string of text representing something that can be said.

	response

	A single string of text that is uttered as an answer, a reply or
an acknowledgement to a statement.

	untrained instance

	An untrained instance of the chat bot has an empty database.

	1

	https://en.wikipedia.org/wiki/Text_corpus

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 chatterbot	

 	
 	
 chatterbot.comparisons	

 	
 	
 chatterbot.response_selection	

 Index

 Index pages by letter:

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

 Full index on one page
 (can be huge)

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

